Object of Interest Detection by Saliency Learning
نویسندگان
چکیده
In this paper, we present a method for object of interest detection. This method is statistical in nature and hinges in a model which combines salient features using a mixture of linear support vector machines. It exploits a divide-and-conquer strategy by partitioning the feature space into sub-regions of linearly separable data-points. This yields a structured learning approach where we learn a linear support vector machine for each region, the mixture weights, and the combination parameters for each of the salient features at hand. Thus, the method learns the combination of salient features such that a mixture of classifiers can be used to recover objects of interest in the image. We illustrate the utility of the method by applying our algorithm to the MSRA Salient Object Database.
منابع مشابه
Graph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملSalient Object Detection by Lossless Feature Reflection
Salient object detection, which aims to identify and locate the most salient pixels or regions in images, has been attracting more and more interest due to its various real-world applications. However, this vision task is quite challenging, especially under complex image scenes. Inspired by the intrinsic reflection of natural images, in this paper we propose a novel feature learning framework f...
متن کاملSelf-explanatory Deep Salient Object Detection
Salient object detection has seen remarkable progress driven by deep learning techniques. However, most of deep learning based salient object detection methods are black-box in nature and lacking in interpretability. This paper proposes the first self-explanatory saliency detection network that explicitly exploits lowand high-level features for salient object detection. We demonstrate that such...
متن کاملSaliency Guided End-to-End Learning for Weakly Supervised Object Detection
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To address this issue, this paper integrates saliency into a deep architecture, in which the location information is explored both explicitly and implic...
متن کاملBridging Saliency Detection to Weakly Supervised Object Detection Based on Self-Paced Curriculum Learning
Weakly-supervised object detection (WOD) is a challenging problems in computer vision. The key problem is to simultaneously infer the exact object locations in the training images and train the object detectors, given only the training images with weak image-level labels. Intuitively, by simulating the selective attention mechanism of human visual system, saliency detection technique can select...
متن کاملWeakly Supervised Saliency Detection with A Category-Driven Map Generator
Top-down saliency detection aims to highlight the regions of a specific object category, and typically relies on pixel-wise annotated training data. In this paper, we address the high cost of collecting such training data by presenting a weakly supervised approach to object saliency detection, where only image-level labels, indicating the presence or absence of a target object in an image, are ...
متن کامل